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I. Phys.: Condens. Mdter6 (1994) 613632. Printed in the UK 
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Abstract. The structure of the stable decagonal quasicrystal A17o.5Mnj6.5Pd13 was determined by 
single-crystal x-my methods. Higher-dimensional struclure-solution techniques were employed, 
such as five-dimensional (so) Patterson and Fourier syntheses as well as 5~ least-squares Swcture 
refinements. A 3o physical-space maximum-enmpy method (MEM) was used in the m m  of 
structure-factor phasing and for the calculation of a highquality electrondensity distribution 
function. Geometrically, the swcNre may be described as a periodic stacking of two different 
qoasiperiodic layers A (puckered +0.3 A) and B (planar) with sequence ABAaba (a and b 
denote the layers A and B. respectively. rotated by 2r/lO), consistent wilh the centrosymmetric 
SD supenpace go;p PlOs/mmc. Basic struchlre-building elements, however, a~ columnar 
duslers (0 - 20 A) with cross-sections corresponding to pans of a decorated Penrose tiling. 
The clusters are packed in a way tM results in a disordered Robinson-triangle tiling. The title 
compound is isotypie to metastable decagonal AhsMnu and loally shows a strong resemblance 
to icosahedral AI6s.7Mng.6Pd21.7. orthorhombic AlsMn and hexagonal p-A4,nMn. 

1. Introduction 

Decagonal phases combine the structural characteristics of both quasiclystals and regular 
crystals: the atoms are quasiperiodically ordered in planes which, by contrast, are stacked 
with translational periodicity. This picture, however, should only be taken as a geometrical 
description. A specifically physical description is the interpretation of decagonal phases 
as quasiperiodically packed columnar clusters, which themselves are periodic along their 
tenfold screw axes (cf Steurer et a/ 1993, referred to in what follows as the ACN paper). 
The translation periods of the decagonal phases known so far are - 4 A, - 8 A, - 12 A, - 16 A, - 24 A and - 36 A corresponding to 2-, 4-, 6-, 8-, 12- and IS-layer stackings 
respectively (Steurer 1990, Okabe et a/ 1992). Decagonal A170,5Mn16.~Pd13 with - 12 A 
translational periodicity was first found and investigated by high-resolution transmission 
electron microscopy (HRTEM) by Beeli and co-workers (1991). Further HRTEM studies were 
performed by Hmga and co-workers (1991), Hiraga and Sun (1993) and Beeli and Nissen 
(1993), while single-crystal x-ray studies were reported by Steurer (1993) and Frey and 
Steurer (1993). Tsai and co-workers (1991) discovered a second stable (?) decagonal phase 
in the AI-Mn-Pd system with 16 A translational periodicity and a chemical composition 
near Al70Mn~Pdz5. Since the two binary decagonal phases A15Pd, with - 16 A period 
(Ma et a1 1988), and Al7sMnu, with - 12 A period (Steurer 1991), are metastable, the 
title compound may be seen as Pd-stabilized A17sMna and decagonal A170MnsPdz5 as Mn- 
stabilized A15Pd. Thus, decagonal A170.5Mnl6.5Pd13 was expected to be isostructural with 
metastable decagonal Al7sMnu. The present work was primarily undertaken to clarify this 
view. 
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2. Experimental details 

An alloy ingot with nominal composition AlgMnzPdz was prepared by melting a mixture 
of AI (99.997%). Mn (99.9%) and Pdj99.9+%) in a plasma jet furnace. Subsequently, 
the sample was annealed at 810°C for 35 min on Ta foil in a quartz ampulla under Ar 
(99.999%) atmosphere and with Ti grains as getter material. The ingot was crushed and 
several crystals with decapdsmatic morphology were ground to spheres in a Bond chamber. 
An approximately spherical crystal with O.lO(2) mm diameter was selected after checking 
for sharp reflections by Laue photographs. For the characterization of the quality of the 
single crystals and the exploration of the distribution of Bragg reflections as well as diffuse 
scattering, numerous x-ray photographs were taken using the Buerger precession technique 
(figure 1). The photogaphs were overexposed with regard to the strongest Bragg reflections 
by about a factor of 100 to make even very weak diffuse scattering and satellite reflections 
observable. All Bragg reflections on the photographs can be indexed using the basis vectors 
a:, i = 1, . . . , 5  (see section 3). The diffuse scattering is condensed in regions having the 
shape of outlined pentagons, which are arranged in decagonal rings around strong Bragg 
reflections. The pentagon corners s nearer to the central Bragg spot m (figure ](a)) may 
be indexed on the basis of wave vectors U? = 0.124u;, i = I , .  . . ,4. The same wave 
vectors were used for indexing the sharp satellite spots of decagonal Al&ol5Nils (cf 
figure 1 of the ACN paper). The stoichiometry of the decagonal phase was determined to 
be Al70.5Mn16.5Pd13 by quantitative x-ray microanalysis on the SEM (Beeli et a1 1991). 

The data collection was performed on an Enraf-Nonius CAD4 four-circle single-crystal 
diffractometer equipped with graphite monochromator (MO Kor, A = 0.7107 A) in the 
8/28-scan mode. In a first run a unique set of 6647 Bragg reflection intensities was 
collected within 0 < .9 < 45", the indices in the range -6 < hi c 6, i = I , .  .. ,4. 
0 < h5 4 24 and the length of the 5D diffraction vector /HI g 2 A-'. All reflections 
with intensities I ( H )  > 2a[I (H)]  were recollected within ten different asymmetric units 
in order to obtain better counting statistics and to minimize the influence of systematic 
errors. Thus, additional 11010 intensities were measured and corrected for Lorentz and 
polarization effects. A spherical absorption correction was performed with minimum 
and maximum transmission factors 0.128 and 0.181, respectively; the linear absorption 
coefficient I* = 15 mm-' was calculated from the mass absorption coefficients f i ~ / p  of the 
elements (International Tables for X-ray Crystallography 1974). The corrected intensities 
were averaged, yielding 476 unique reflections (Ri  = 0.053) with I ( N )  > 3u[I(H)] .  
Reflections with intensities I ( H )  < 3u[I(H)]  could not be separated adequately from the 
underlying diffuse background and were rejected. The intensity distribution as a function of 
the perpendicular versus the parallel component of the 5D diffraction vector H = (HII, H I )  
is depicted in figure 2. 

3. Structure solution and refinement 

3.1. Symmetry and metria 

Higher-dimensional structure-solution techniques were used in the same way as described by 
Steurer (1990, 1991) for decagonal AI78Mnzz. Thus, only a few definitions will be repeated: 
the 5D embedding space V = (VI1, V') consists of two orthogonal subspaces, the 3D 
physical (parallel, external) space VI' with basis vectors q ,  z)~,  2rj and the 2D perpendicular 
(complementary, internal) space VI with basis vectors v4, %. All physical space reciprocal 
lattice vectors H n  = hlal+h:a;*+h$$ = hla;+h~a;+h3a;+h4a;+h5a;, with h l ,  hi 
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Figure 1. Details of x-ray precession photographs of decagonal A17o.SMnt6.SPd13: ( a )  Zero- 
layer photograph with the reflections 1(1OOW), 2(100iO). 3(llOiO), 4(1 li10) marked. Diffuse 
pentagons are arranged around strong Bragg reflections m: the inner comers s may be indexed 
by wave vectors a7 = 0.124af. the outer comem 1 by wave vectors af' = 0.236~:. There are 
also satellite reflections ss around strong Bragg reflections. which can be indexed by basis 
v e c t m  ay = 0.124/raf = 0.07660:, i = 1, ..., 4. ( b )  First layer with systematical 
extinctions between the reciprocal basis vectom. consistent with IO/mmm diffraction symmetry. 
Extinct reciprocal lattice rows x e  marked by m w s .  the (10001) reflection by 1. (c )  Zero- 
layer photograph perpendicular to that shown i n  ((I) with the (10000) reflection indicated by 1. 
( d )  Cone-axis photograph showing very sharp unsplit Bragg spots superposed on diffuse rings 
(rings are numbered). (MO KO, Iohansson-type focusing quartz monochromator, Rigaku R U  
200 mtating-anode assembly, 0.3 x 0.3 mm2 fine focus, 60 kV, 90 mA, w = 30"; 100 mm 
crystal-to-film distance and - 170 h exposure time for (a), ( b )  and (c); 30 mm distance and 
1.5 h for (d)). 

U irrational and h,, hi, i = 1,  . . . , 5 ,  integer numbers, can be written as linear combinations of 
the five reciprocal basis vectors at = af(cos2nijS. sinZni/S, 0) with at = 0.2570(1) A-', 
i = 1, , , . ,4, and a; = a;(O, 0, I) ,  with a; = 0.07964(2) k'. The star of these five 
reciprocal basis vectors corresponds to a projection of the hypothetical 5 0  reciprocal basis 
vectors d: = (a;, 0, uii), i = 1, . . . ,4 ,  d; = (0, a;, 0) onto VI'. The direct basis vectors 
(in the following called the d basis), spanning the unit cell in  5D space, can be written in the 
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Figure 2. hlEnSiQ sfaIiSti~~ with the perpendicular versus the parallel component of the 
diffraction vector H = (EU, H I ) .  The radius of the circles is proponional to the respective 
smcture amplitudes: the lengths of the diffraction vector components xe given in A-I. For a 
comparison with Q slalistics multiply by a faclor of k. 

form di = 2/(5a~)(cos2ni/5-1,sin~i/~,0,cos6ni/5-1. sin6ri/5), i = I ,  .. . ,4, and 
d5 = l/a;(O, O , l , O , O ) ;  the vector components refer to the above-mentioned 5D orthogonal 
coordinate system spanned by the basis vectors vi. i = 1,. . . ,5 (in what follows called the 
v basis). The absolute values of the vectors d;. d,  amount to d; = 2'/*af = 0.3633 1) .&-I, 

i = 1 , .  . . , 4 ,  d; = U; = 0.07964(2) A-', and di = 2/(5'l2a;) = 3.480(1) A, i = I , .  . . ,4 ,  
d5 = l/a; = 12.557(1) A, respectively; the angles are ti, = 60", ai5 = go", i, j = 1, . . . ,4, 
and the volume is V = 5'/'d;d5/4 = 1029.8(1) A5. The 5D least-squares structure 
refinements were performed on the d basis, the 3D MEM calculations and the graphical 
representation of the (electron) density maps on the v basis. 

For our sample of A170.5Mn16.5Pd13, systematically absent Bragg reflections and diffuse 
scattering (marked by arrows in figure I@)) of the type 

- 
hih2h~hih5 : h5 = 2n + I ( " 7 5  : h5 = 2n + 1) 

were observed, indicating c-glide planes and a 105 screw axis, consistent with 5D superspace 
groups PlOsmc and PlOs/mmc, respectively (Rabson ern[ 1991). PlO~/mmc was used in 
the course of structure determination since there was no hint for absence of centrosymmetry. 
The appearance of systematic extinctions in accordance with diffraction symmetry IO/mmm 
is proof that the sample is not simply a five- or tenfold incoherently twinned crystalline 
material, since the superposition of the diffraction patterns of such twin individuals could 
never produce systematic absences of the observed symmetry (cf the ACN paper). Because of 
this fact and since all observable Bragg reflections can be indexed in a way consistent with 
the sD reciprocal basis mentioned above, the sample must have at least an average structure 
that can be described within the nD approach, which is invariant under the operations of 
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the 5D symmetry group PlOs f mmc. From this it does not necessarily follow, however, that 
the structure has to be quasiperiodic in the strict sense; it may also correspond to a random 
tiling (Henley 1991) in the broadest sense of the word (including nanocrystalline domains), 
being quasiperiodic only on average. 

0 

Figure 3. Chamcteristic (101 IO) Seclion of lhe 5 0  PYlerson function. All maxima of one ID 
unit cell are lmted on this special plane. Ail coordinates are given on the v basis. 

3.2. Structure solution 

Since the characteristic sections of the respective 5D Patterson functions of decagonal 
A170.5Mn16.5Pd13 (figure 3) and A178Mnn (figure 2 of Steurer 1991) proved to be very 
similar, the 5D structure model proposed for decagonal Al,gMn= was taken as the starting 
model for the least-squares refinements. With some modifications indicated by 5D difference- 
Fourier syntheses and MEM density maps a model consisting of four byperatoms was derived, 
converging to the final values R = 0.249 and w R  = 0.214 for 33 refined parameters and 476 
reflections. In addition to the parameters listed in table 1. some scale factor and one isotropic 
empirical extinction factor were refined. The quality of the least-squares fit is illustrated in 
an F,(N)/F,(H) plot (figure 4). The R factors are rather high compared to those obtained 
for the recent structure refinements of the approximant phases: R = 0.139, W R  = 0.072 
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Figure 4. F,(M/F,(H) plot of the final model. 

Table 1. Panmeters of the refined SD hyperatom of decagonal AI,o,SMn~6~Pdi3: fractional 
hyperatomic coordinates xi .  i = I . ,  .. . 5  (d basis); panllel space temperalure faclon SP, 
isotropic in the quasiperiodic layers, and B13 perpendicular to them (A2); total site occupancy 
factor PI .  panial site occupancy factors and PM“. p w ;  ndial hyperatomic size parameter 
Ax as a fraction of ni (a negative value denotes an opposile direction of Axe;). In the cases with 
composite hyperatoms, consisting of a small and a large pentagon that are independent of each 
other or in a penug” sire relation, the parameters of the components are given on successive 
lines. 

Hyperatom 1 2 4 5 
Componeni[s) hvo peniagons pentag” one pentagon pentagram 
Site symmetry 5m 5,n iomz lOmZ 

x j , i = 1 ,  .... 4 5 
Multiplicity 4 4 2 2 

! 0 I 3 
3 

XS 0,0631(3) 0.114(2) f 1 

43 0 . W )  6(2) 
2 - 5 6 )  8(2) 

Pk I 1 
0.80(8) 0.53(7) 

P A  I 0 0 3 2 )  
0.79(6) 0.9(2) 

PMn 0 0.5(2) 
0.09(5) 0.W) 

DPd I 0 

1.4(9) 
0.3(3) 
1 
0.61(6) 
0 
0 
0dn9) 
0.69(4) 
0.40 . .. 

0.12 0 - 0.31 
Radius. 1 b  0.147(6) -0.18 0.39(2) 0.15 . .. . .  . .  

0.45(1) -0.47(2) - 0.38(1) 

for p-Al4.12 (Shoemaker et a1 1989). and R = 0.066 for AI,Mn (Hiraga et ai 1993). 
This is caused by deficiencies of the refined model but also by experimental problems: as 
mentioned by Hiraga and co-workers (1991), a single annealed sample may contain regions 
with perfect decagonal structure besides ones with nanocrystalline or random tiling-like 
atomic arrangements. In such a case, the Bragg intensities of these structurally different 
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Figure 5. (101 IO) Section of the 5D Fourier function calculated after fie last refinement cyde 
using Fo(W for Fourier coefficients. The hyperatoms in the asymmeeic unit am marked by 1, 
2. 3, 4 and 5. The lower part of hyperatom 2 and one other p e d  (both marked by arrows) are 
mefacts generated by series truncation effects. All coordinates are given on the v basis. 

parts would be superposed coherently and/or incoherently and bias the calculated structure 
amplitudes. These problems are well known from the structure analysis of regular crystals 
with microdomain smctures. Another experimental problem not satisfactorily solved was 
the separation of weak Bragg reflections from the structured diffuse background. It has to 
be pointed out, however, that to date our data set represents the largest data set included 
successfully in quasicrystal structure refinement. The refined hyperatomic parameters are 
listed in table 1; the characteristic (IO1 10) Fourier section with refined hyperatoms numbered 
is plotted in figure 5; figure 6 illustrates (Oool 1) sections of the density distribution of the 
hyperatoms, with the hyperface fit parameters indicated. The core region of hyperatom 
1 corresponds to Pd atoms, the surrounding region mainly to AI. Hyperatom 2 consists 
of AlMn with Mn enriched in its central part, while hyperatom 4 consists of A1 only. 
Hyperatom 5 corresponds to - 4 Pd and - $ Mn. Hyperatom 3 was not included in the 
refinement in order to keep the number of variables low. The low occupation probability of 
the peripheral regions of the hyperatoms reflects the disordered character of the structure: 
the atomic surfaces are no longer dense planes in the perpendicular space comparable to 
the case of fractal structures, for instance. The point density of 0.059 calculated from the 
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Figure 6. Characteristic perpendicular-space (00011) sections of the ID Fourier function 
illustrating the density distriburion of (a )  hyperatom 1 with pentagon panmeters used 
for pammewiwtion in the refinements The upper drawing gives the density along XI = 0. 
Equivalent sections for the hypemoms (b)  2 (c) 3. (d)  4 and (e)  5. All coordinates ax given 
on the v bask. 

least-squares parameters corresponds only to a lower limit as a consequence of the rather 
crude model refined; the point density estimated from the MEM maps is significantly higher, 
and that determined from the model is equal to 0.066. For comparison, for icosahedral 
A I s ~ . ~ M ~ s . s P ~ ~ ! , ,  a point density of 0.069 and for the approximant phase A13Mn a point of 
density of 0.068 were derived. 

Using solely the Bragg reflections and neglecting the diffuse scattering during the 
structure analysis is equivalent to averaging over the disordered structure. In terms of 
the nD description, this corresponds to a superposition of hyperatoms of different SD unit 
cells that would be identical in an ordered structure but differ from each other in the presence 
of disorder. A completely satisfying parametrization of the resulting complex hyperatoms 
would increase the number of variables to be refined in an inadmissible manner. The 
modelling of the hyperatoms by 5D least-squares refinements was stopped, therefore, after 
reaching an R factor that was small enough to warrant correct phases (0 or z in our case of 
a centrosymmetric structure) of at least the larger structure factors. Subsequently, 3D MEM 
was employed for phasing the remaining structure amplitudes (for a detailed description of 
this method see the ACN paper): the calculated signs of the 151 largest structure factors 
(IFo(H)l > O.llF(oOO)l) out of 476 were assigned to the observed structure amplitudes 
IFo(W)l constituting an MEM starting set. Each MEM calculation was run until R < 0.05 
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(the expected R factor), then all observed structure amplitudes of the unused set with 
(1 - x)IFc(H)I g IF,(H)I 6 ( I  + x)IFC(H)I, x = 0.25 in all cycles but the last one 
( x  = OS),  were supplied with the signs of the respective calculated StIUcture factors and 
included into the new MEM starting set, and so on. It is emphasized that Mm4 was applied 
as a purely 3D technique not affected by any problems of finding a correct 5D basis (5D 
supercell), since all observable Bragg reflections were self-consistently indexed on a 3D 
basis. One shortcoming of 30 MEM, however, was the limited size of the 3ff electron- 
density function in the quasiperiodic plane: the MEM calculations were performed on a 
1000 x 1000 x 80 grid for a volume of 195 x 195 x 12.557 A3 with symmetry taken into 
account. To transform the 3D structure information into a 5D representation, i.e. to image 
the 5D hyperatoms. the density obtained by MEM had simply to be lifted (cf the ACN paper). 

4. Discussion 

4.1. The diffraction pattem 

The precession photographs (figure 1) show sharp Bragg reflections, satellites and diffuse 
scattering condensed in equally sized, outlined pentagons arranged in decagonal rings around 
strong Bragg reflections. The sharp spots on the zero-layer precession photograph give a 
pattern very similar to that found for the Bragg intensities on an equivalent photograph 
of decagonal A170C015Ni15, indicating that the projected average structures (not the real 
disordered ones!) should be closely related. Indeed, comparing the respective projected 
electron-density maps (figure 7 of this work and figure 8 of the ACN paper), a similar 
distribution of large and small wheel-like motifs can be found. These wheels correspond 
to columnar clusters as known from the structure analysis of decagonal AI70Co15Ni15 (cf 
the ACN paper), and their structures can be reconstructed by evaluating the physical-space 
sections of the 5D electron-density function (figure 8). Some high-HL reflections coincide 
with outer corners of the diffuse pentagons and might be slightly less sharp than the 10w-H~ 
ones. Shifts of Bragg spots away from their ideal positions indicating anisotropic phason 
strain are not observed. 

The diffuse scattering (figure 1) is completely different from that observed for decagonal 
AId!o15Ni15 (cf figure 1 of the ACN paper). It shows great resemblance to optical diffraction 
patterns taken from random Robinson-triangle tilings containing nanocrystalline regions (cf 
figure 3(c) of Welberry 1989) and to electron-diffraction photographs of disordered regions 
of A170Mn17Pd13, annealed at 800°C for 4 days (figure 4 of Hiraga et al 1991). It has, 
however, not even the slightest similarity to the diffuse scattering generated by, for instance, 
random Penrose-rhombus tilings "elberry 1991). 

The intensity ratio of diffuse scattering compared to Bragg scattering, and thereby the 
amount of disorder present in the structure, can be estimated by means of the cone-axis 
photograph (figure I@)): each ring corresponds to one projected reciprocal lattice layer. 
It is found that the intensity of the integrated diffuse scattering is of the same order as 
that of the Bragg scattering, a.s is also found for decagonal A170Co15Ni~~ (cf figure l(f) 
of the ACN paper). It has to be mentioned that this type of structured diffuse scattering 
is completely absent in comparable diffraction patterns of decagonal Al&lnu (cf figure 2 
of Steurer and Mayer 1989). Since in our structural study diffuse scattering is neglected, 
only an average structure can be obtained, which reflects the global properties of decagonal 
A170,5Mn1,j.~Pd~~. The split positions in the electron density maps (figure 8). as far as they 
are not caused by series-termination effects, contain the information on all the different 
orientations and combinations of the clusters that occur in the structure. The atomic 
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Figure 7. 195 x 195 iz parallel-space (11000) projectioi of the electron density. One Penrose 
unit rhombus, with edge length a: = L = ?0.29(1) A and Robinson triangles marked, is 
shaded. Addilionally, a pm of a mndom Robinson tiling inflated by a factor r is supelposed to 
the electron density map. The black dots on its veltices mark positions of possible decagonal 
ring contnsts on corfesponding HRTEM images (cf Beeli et al 1991, Huaga et a1 1991). All 
coordinates afe given on the U basis. 

configuration of the clusters can be derived from the average structure only because of 
the self-similarity properties of their structures and the strictly limited packing possibilities 
leading to rather perfect coincidence site lattices, with only a few ambiguities in atomic 
positions and some more in chemical ordering. 

From basic similarities of the electron diffraction patterns of decagonal A170.5Mn16.5Pd13 
to those of orthorhombic AI3Mn, Hiraga and co-workers (1993) concluded a close 
resemblance of their local structures. This is confirmed, at least for the projected st~~ctures, 
by the great similarity of the respective patterson maps (figure 9 of this work and figure 4 
of Hiraga etal 1993). Other approximants for this type of decagonal phase are monoclinic 
A113Fe.4 as was previously demonstrated for isotypic decagonal A178Mnzz (Steurer 1991), 
and hexagonal p-A14,,zMn (Shoemaker 1993). In all the approximant structures pentagonal 
and decagonal structure motifs can be found in a non-optimum way of packing, i.e. the 
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eigensymmetry of the structure motifs does not agree with the lattice symmetry. By contrast, 
quasiperiodicity allows a much more effective packing, without the need to distort these 
structure elements. It should be emphasized that the term ‘approximant’ does not necessarily 
mean that the approximant structure and the decagonal structure are related by a particular 
5D rotation; this case would be called ‘rational approximant’. It is  rather used here in the 
meaning of ‘related structure’. 

Flyre 9. 15.6 x 15.6 A’ parallel-space (11000) projection of the Partenon function. Several 
maxim are marked with letters P-U for compxiison with the respective Patterson map of 
orlhorhombic AbMn, 

Decagonal Al70.5Mn16.5Pdl) is perfectly ordered along the periodic direction (there is 
no diffuse scattering perpendicular to the layers) while for isotypic metastable decagonal 
A178Mn22 a doubling of the period is indicated by diffuse interlayer lines on the diffraction 
patterns. Similar phenomena are observed for decagonal A170CoISNi15 and A I ~ ~ C O ~ ~ C U ~ O  
(Frey and Steurer 1993). 

4.2. The columnar clusters 

From the electron-density maps (figure 8) the cross-sections of the elementary columnar 
clusters and their linking principles can be derived. The structure motifs found in these 
sections are dominated by interconnected pentagons, trapezoids and decagons, which form 
a decoration of an underlying Penrose quasilattice (basic quasilattice) with edge length of the 
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Figure 10. Schematic representation of the layer-stacking principles of a columnar cluster Of 
decagonal Al~o,sMnla,sPdl~ along one tnnslotion period. Chmcteristic coordination polyhedra 
are outlined and typical interlayer distances are given. 

unit rhombus a, = 2.518(1) 8,. The electron-density maps also allow a partial reconstruction 
of the A1/MnlPd distribution. The split maxima among others reflect the different ways of 
atomic relaxation during the coalescence of several columnar clusters. 

The in-plane atomic distances, with 2.518(1) 8, (radius of a small pentagon) and 
2.961(1) A (edge length of a small pentagon) are significantly larger than the shortest inter- 
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planar atomic bond lengths of 2.32 A, for instance, for the small pentagonal antiprisms 
(figure 10). Typical bond lengths in intermetallic compounds of similar composition are, 
for comparison: dAI-AI = 2.60-2.91 A and 2.527-3.166 A, dA1-M" = 2.39-2.80 8, and 
2.359-2.874 A, &-M = 2.66-2.78 and 2678-2.758 A for orthorhombic AlsMn (Hiraga 
et a1 1993) and hexagonal p-Al4.lzMn (Shoemaker et al 1989), respectively. The respective 
Pd distances are slightly larger, such as dAI-pd = 2.525-2.744(1) A for tetragonal A121Pd8 
(Range and Christ1 1988), and dpd-pd = 2.750 .& for elementary Pd. Thus, the small 
pentagonal antiprisms may preferentially consist of alternating stacked AI and Mn pentagons 
strongly bonded together. These pentagonal antiprismatic columns running parallel to the 
columnar cluster axis (one at the centre and ten more around it) appear to be the most 
stable structure motifs stabilizing the columnar clusters as independent structural units. The 
structure of such a columnar cluster is shown schematically in figure 10. 

Orthorhombic A13Mn locally shows a similar stacking sequence along b, the axis being 
related to the tenfold screw axis of the decagonal phase: antiprismatic pentagonal prisms 
(a) alternate with pentagonal prisms (p) with the same sequence . . . aapaa.. . (Hiraga et al 
1993) as in the peripheral parts of the columnar clusters of the decagonal phase. Hexagonal 
p-AI4.12Mn also shows a strong resemblance to the decagonal phase (Shoemaker 1993): the 
a axis corresponds to a pseudofivefold rotation axis, and many structure motifs occur like 
the pentagon-trapezoid bands, which are also characteristic of the decagonal phase. 

4.3. The packing of the clusrers 

Starting with one columnar cluster, the coalescence of a second cluster can be carried out 
with quite perfect coincidence regions in only five symmetrically equivalent orientations 
and with two different interpenetration depths resulting in centre-to-centre distances L = 
20.29( 1) A and S = L/r (7 = (1+5'/*)/2). For sterical reasons the number of combinations 
decreases drastically when more clusters are added. In figure 11 the aggregation of, in 
each case, three clusters into large and small Robinson triangles is shown schematically 
for different x s  levels. The coincidence regions contain a few ambiguities in atomic 
positions (exemplarily marked by arrows in figure ll(a)), which may be separately realized 
at different sites in the real structure. The ring of ten chains of pentagonal prisms and 
antiprisms around the centre of a cluster, appearing in the projected structure as small 
decagons (marked in figure 8 ( d )  by dotted lines) is preserved when two columnar clusters 
are linked with distance L. For the aggregation of a cluster with distance S = L/r these 
decagonal rings can be presereved only for one cluster; the others become distorted. One 
such distorted decagon near the centre of a large Penrose rhombus is marked in figure 8(d) 
by dotted lines. Thus the Robinson triangles become asymmetrically decorated. This 
explains the observation that in HRTEM images only distances L occur between the decagonal 
ring contrasts. Parts of the projected electron density mapped in figure 7 were partly 
superimposed with a random Robinson-triangle tiling, and vertices with distances from 
each other larger than or equal to L were marked by black dots. Connecting the dots a 
random Robinson tiling inflated by a factor of 7 is obtained. If these inflated Robinson 
triangles, representing a kind of superstructure of the basic quasilattice of small Penrose 
rhombi (cf figure 8(d)) ,  are really present in the structure, this has to be reflected in the 
diffraction pattern: indeed, satellite reflections are observed that can be indexed by wave 
vectors of length ay = 0.124/ra; = 0.0766~1, i = I ,  . . . , 4  (figure ](a)). A comparison 
with figures 2 and 4 of the paper by Hiraga and co-workers (1991) confirms that this 
model is also in agreement with HRTEM images of both the decagonal and nanocrystalline 
parts of the sample. Without matching rules, these unit tiles combine randomly. Indeed, 
as indicated by the diffuse scattering, our sample has a high degree of disorder. On the 
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other hand, the precession photographs indicate that the systematic extinction rules for the 
Bragg reflections are also valid for the diffuse scattering. This appears to be the crucial 
point for the interpretation of the diffuse scattering. Since at high temperature no structured 
diffuse scattering is observed, the structural distortions initiated at lower temperatures must 
leave invariant the symmetry of the average and the real structure in coherently scattering 
regions of at least several hundred A diameter. In the nD description the disorder may then 
be described by a random fluctuation in phason space, bounded by a periodic wave. The 
global phason strain is zero because no shifts of reflections could be observed. 

The structure model for the columnar clusters of decagonal Al70Mn11Pd13 proposed by 
Hiraga and Sun (1993), considering A13Mn as a close approximant of the decagonal phase, 
has only locally some similarities to the present model. Comparing decagonal AI-Mn-Pd, 
however, with the structure of icosahedral AI,j8.1Mn9.6Pd~1.7 (Boudard et al 1992) shows 
an almost identical electron-density distribution of the projected s&uctures. This is not 
very astonishing, since the decagonal phase obeys pseudo-icosahedral diffraction symmetry, 
indicating that the decagonal phase is a closely related approximant of the icosahedral phase. 
It was also observed that crystals of the decagonal phase epitaxially grown on p i n s  of 
the icosahedral phase have their tenfold axes parallel to one of the fivefold axes of the 
icosahedral phase (Beeli 1992). The atomic layers of the decagonal phase have, at least 
with regard to the atomic positions, their analogues in the icosahedral phase (cf figure 10 
of the paper by Boudard et aI 1992): the layer in xg = 0.065 1 zA5 = 2.522 A, the layer 
in x3 = 0.113 E zM = 0.482 A, the layer in x3 = $ 1 the layer in ZM = 0.482 A, 
rotated around 2rr/10. The decoration with atomic species appears to be different, a natural 
consequence of the different chemical compositions of the decagonal and the icosahedral 
phase (Pd is partly substituted for AI compared to the decagonal phase). 

5. Concluding remarks 

The structure of decagonal A170.5Mn16.5Pd13 can be described as a kind of random tiling 
of Robinson triangles, with edge lengths L = 20.29(1) A and S = L/r.  The unit tiles 
are decorated with columna clusters, with intracolumnar bonds shorter than intercolumnar 
ones. The structure of the columnar clusters, on the other hand, corresponds to a decorated 
Penrose tiling, with edge length of the unit rhombus a, = 2.518(1) A. Thus, the structure 
of the decagonal phase resembles a random tiling of small pieces of an ordered decorated 
Penrose tiling. The local structure of the decagonal phase shows close resemblance to 
the local structures of icosahedral AIa.7Mn9.6Pd~1.7 and of the approximant phases A13Mn, 
p-A14,12Mn and A113Fe4. 
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