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Abstract. The structure of the stable decagonal quasicrystal Alzp sMnjg sPdjs was determined by
single-crystal x-ray methods. Higher-dimensional structure-solution techniques were employed,
such as five-dimensional (5D) Patterson and Fourier syntheses as well as 5D least-squares structure
refinements. A 3D physical-space maximum-entropy method (MEM) was used in the course of
structure-factor phasing and for the calculation of a high-quality electron-density distribution
function. Geometricaily, the structure may be described as a periodic stacking of two different
guasiperiodic layers A (puckered 0.3 A) and B (planar) with sequence ABAaba (a and b
denote the layers A and B, respectively, rotated by 2mw/10), consistent with the centrosymmetric
5D superspace group P10s/mme, Basic structure-building elements, however, are columnar
clusters (@ ~ 20 A) with cross-sections corresponding to parts of a decorated Penrose tiling.
The clusters are packed in a way that results in a disordered Robinson-triangle tiling. The title
compound is isotypic to metastable decagonal AlzgMnzz and tocally shows a strong resemblance
to icosahedral Algg7Mng ¢Pda) 7, arthorhombic Al3Mn and hexagonal ze-Aly ;oMn.

1. Introduction

Decagonal phases combine the structural characteristics of both quasicrystals and regular
crystals: the atoms are quasiperiodically ordered in planes which, by contrast, are stacked
with translational periodicity. This picture, however, should only be taken as a geometrical
description. A specifically physical description is the interpretation of decagonal phases
as quasiperiodically packed columnar clusters, which themselves are periodic along their
tenfold screw axes (cf Steurer et af 1993, referred to in what follows as the ACN paper).
The translation periods of the decagonal phases known so farare ~ 4 A, ~ 8 A, ~ 12 A,

~ 16 A, ~ 24 A and ~ 36 A corresponding to 2-, 4-, 6-, 8-, 12- and 18-layer stackings
respectively (Steurer 1990, Okabe et af 1992). Decagc)nal AlqosMnygsPd;; with ~ 12 A
translational periodicity was first found and investigated by high-resolution transmission
electron microscopy (HRTEM) by Beeli and co-workers (1991). Further HRTEM studies were
performed by Hiraga and co-workers (1991), Hiraga and Sun (1993) and Beeli and Nissen
(1993), while single-crystal x-ray studies were reported by Steurer (1993} and Frey and
Steurer (1993). Tsai and co-workers (1991) discovered a second stable (?7) decagonal phase
in the Al-Mn-Pd system with 16 A translational periodicity and a chemical composition
near Al;pMnsPdys. Since the two binary decagonal phases AlsPd, with ~ 16 A period
(Ma et al 1988), and Al;gMngy, with ~ 12 A period (Steurer 1991), are metastable, the
title compound may be seen as Pd-stabilized AlygMngs and decagonal AlMnsPd;s as Mn-
stabilized AlsPd. Thus, decagonal AlyysMnygsPdy3 was expected to be isostructural with
metastable decagonal AlzsMng;. The present work was primarily undertaken to clarify this
view.
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2. Experimental details

An alloy ingot with nominal composition AloMnoPd, was prepared by melting a mixture
of Al (99.997%), Mn (99.9%) and Pd_(99.9+%) in a plasma jet furnace. Subsequently,
the sample was anneated at 810°C for 35 min on Ta foil in a quartz ampulla under Ar
{99.999%) atmosphere and with Ti grains as getter material. The ingot was crushed and
several crystals with decaprismatic morphology were ground to spheres in a Bond chamber.
An approximately spherical crystal with 0.10(2) mm diameter was selected after checking
for sharp reflections by Laue photographs. For the characterization of the quality of the
single crystals and the exploration of the distribution of Bragg reflections as well as diffuse
scattering, numerous x-ray photographs were taken using the Buerger precession technique
(figure 1). The photographs were overexposed with regard to the strongest Bragg reflections
by about a factor of 100 to make even very weak diffuse scattering and satellite reflections
observable. All Bragg reflections on the photographs can be indexed using the basis vectors
a}, i =1,...,5 (see section 3). The diffuse scattering is condensed in regions having the
shape of outlined pentagons, which are arranged in decagonal rings around strong Bragg
reflections. The pentagon corners s nearer to the central Bragg spot m (figure 1(«)) may
be indexed on the basis of wave vectors af* = 0.124a}, { = 1,...,4. The same wave
vectors were used for indexing the sharp satellite spots of decagonal Al;gCosNijs (cf
figure 1 of the ACN paper). The stoichiometry of the decagonal phase was determined to
be AlygsMnissPdis by quantitative x-ray microanalysts on the SEM (Beeli ef af 1991),

The data collection was performed on an Enraf-Nonius CAD4 four-circle single-crystal
diffractometer equipped with graphite monochromator (Mo Ke, A = 0.7107 A) in the
6/28-scan mode. In a first run a unique set of 6647 Bragg reflection intensities was
collected within 0 < 8 < 45°, the indices in the range —6 < h; < 6, i = 1,...,4,
0 < hs < 24 and the length of the 5D diffraction vector |H| < 2 A~'. All reflections
with intensities J{H) > 2¢[/(H)] were recollected within ten different asymmetric units
in order to obtain better counting statistics and to minimize the influence of systematic
errors. Thus, additional 11010 intensities were measured and corrected for Lorentz and
polarization effects. A spherical absorption correction was performed with minimum
and maximum transmission factors 0.128 and 0.181, respectively; the linear absorption
coefficient i = 15 mm™? was calculated from the mass absorption coefficients w; /o of the
elements (International Tables for X-ray Crystallography 1974). The corrected intensities
were averaged, yielding 476 unique reflections (R; = 0.033) with I{(H) > 3e[l(H)].
Reflections with intensities J{(H) < 3¢[I(H)] could not be separated adequately from the
underlying diffuse background and were rejected. The intensity distribution as a function of
the perpendicular versus the parallel component of the sp diffraction vector B = (H'l, H+)
is depicted in figure 2.

3. Structure solution and refinement

3.1. Symmetry and metrics

Higher-dimensional structure-solution techniques were used in the same way as described by
Steurer (1990, 1991} for decagonal AlygMna;. Thus, only a few definitions will be repeated:
the 5D embedding space V' = (VI, V1) consists of two orthogonal subspaces, the 3D
physical (parallel, external) space VIl with basis vectors v;, ¥4, v and the 2D perpendicular
(complementary, mterna]) space vi w1£h basis vectors v, vs. All physical space reciprocal
lattice vectors H! = hla, +h20.2 +h3a3 = haj+hzai+hsa;+hea;+hsal, with A, hII
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Figure 1. Details of x-ray precession photographs of decagonal AlygsMnyesPdy3: (a) Zero-
layer photograph with the reflections 1(10000), 2(10010), 3(11010), 4(1 1110) marked. Diffuse
pentagons are arranged around strong Bragg reflections m: the inner corners s may be indexed
by wave vectors ai* = 0.124a, the outer cormers 1 by wave vectors a* = 0.236a}. There are
also satellite reflections ss around strong Bragg reflections, which can be indexed by basis
vectors a™ = 0.124/ra; = 0.0766a}, i = 1,...,4. (b) First layer with systematical
extinctions between the reciprocal basis vectors, consistent with 10/mmm diffraction symmetry.
Exiinct reciprocal lattice rows are marked by arrows, the (10001) reflection by 1. (¢) Zero-
layer photograph perpendicular to that shown in (a) with the (10000) reflection indicated by 1.
(d) Cone-axis photograph showing very sharp unsplit Bragg spots superposed on diffuse rings
(rings are numbered). (Mo Ka, Johansson-type focusing quartz monochromator, Rigaku RU
200 rotating-anode assembly, 0.3 x 0.3 mm? fine focus, 60 kV, 90 mA, g o= 30°; 100 mm
crystal-to-film distance and ~ 170 h exposure time for (@), (¢) and (c); 30 mm distance and
1.5 h for (d)).

irrational and hg, h;,i=1,...,5, integer numbers, can be written as linear combinations of
the five reciprocal basis vectors a} = a}(cos 2wi /5, sin2mi /5, Q) with a} = 0.2570(1) AL
i =1,...,4, and at = a$(0,0, 1), with aZ = 0.07964(2) A-1. The star of these five
reciprocal basis vectors corresponds to a projection of the hypothetical 5D reciprocal basis
vectors df = (a},0,a}),i =1,...,4, d} = (0,a},0) onto VI. The direct basis vectors
(in the following called the d basis), spanning the unit cell in 5D space, can be written in the
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Figure 2. Intensity statistics with the perpendicular versus the parallel component of the
diffraction vector H = (HV, H*)}. The radiu$ of the circles is proportional to the respective
structure amplitudes; the lengths of the diffraction vector components are given in A=, For a
comparison with  statistics multiply by a factor of 2.

form d; = 2/(5a})(cos2mi/5—1,sin2mi/3,0,co86mi/5—1,5in6mi/5),i =1,...,4, and
ds = 1/a%(0,0, 1,0, 0); the vector components refer to the above-mentioned 5D orthogonal
coordinate system spanned by the basis vectors v, { = 1,...,5 (in what follows called the
v basis). The absolute values of the vectors d?, d, amount to df = 2'/%a? = 0.3635(1) A,
i=1,...,4,d} =af=007964(2) A~', and d; = 2/(5"%a}) =3.480() A, i =1,...,4,
ds = 1/a} = 12.557(1) A, respectively; the angles are i = 60°, a;s =90°,i, j=1,...,4,
and the volume is V = 5'2d’ds/4 = 1029.8(1) A®. The 5D least-squares structure
refinements were performed on the d basis, the 30 MEM calculations and the graphical
representation of the (electron) density maps on the v basis.

For our sample of AlspsMng5Pd 3, systematically absent Bragg reflections and diffuse
scattering (marked by arrows in figure 1(b)) of the type

Arhohiabihs T hs=2n+4 1 (0000hs : As =2n + i3]

were observed, indicating c-glide planes and a 105 screw axis, consistent with 5D superspace
groups P10smc and P10s/mmc, respectively (Rabson er al 1991). P10s/mmc was used in
the course of structure determination since there was no hint for absence of centrosymmetry.
The appearance of systematic extinctions in accordance with diffraction symmetry 10/ mmm
is proof that the sample is not simply a five- or tenfold incoherently twinned crystalline
material, since the superposition of the diffraction patterns of such twin individuals could
never produce systematic absences of the observed symmetry (cf the ACN paper). Because of
this fact and since all observable Bragg reflections can be indexed in a way consistent with
the 5D reciprocal basis mentioned above, the sample must have at least an average structure
that can be described within the »D approach, which is invariant under the operations of
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the 5D symmetry group P10s/mmc. From this it does not necessarily follow, however, that
the structure has to be quasiperiodic in the strict sense; it may also correspond to a random
tiling (Henley 1991) in the broadest sense of the word (including nanocrystalline domains),
being quasiperiodic only on average.

Figure 3. Characteristic (10110) section of the 5D Patterson function. All maxima of one sp
unit cell are located on this special plane. All coordinates are given on the v basis.

3.2. Structure solution

Since the characteristic sections of the respective 5D Patterson functions of decagonal
Alzg sMnyg sPdys (figure 3) and AlgMng, (figure 2 of Steurer 1991) proved w0 be very
similar, the sD structure model proposed for decagonal Alz;sMng, was taken as the starting
model for the least-squares refinements. With some modifications indicated by 5D difference-
Fourier syntheses and MEM density maps a model consisting of four hyperatoms was derived,
converging to the final values R = 0.249 and wR = 0.214 for 33 refined parameters and 476
reflections. In addition to the parameters listed in table 1, some scale factor and one isotropic
empirical extinction factor were refined. The quality of the least-squares fit is illustrated in
an F,(H)/F.(H) plot (figure 4). The R factors are rather high compared to those obtained
for the recent structure refinements of the approximant phases: R = 0.139, wR = 0.072
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Figure 4. Fo(H)}/F.(H) plot of the final model.

Tabie 1. Parameters of the refined sp hyperatoms of decagonal AlygsMnissPdiy: fractional
hyperatornic coordinates x;, { = 1,...,5 (d basis); parallel space temperature factors Blll
isotropic in the quasiperiodic Iayers, and BL perpendicular to them (AZ); total site occupancy
factor p;, partial site occupancy factors pa) and pwn, ppas radial hyperatomic size parameter
Ay as a fraction of g; (a negative value denotes an opposite direction of Are;). In the cases with
composite hyperatoms, consisting of a smell and a large pentagon that are independent of each
ather or in a pentagram size relation, the parameters of the components are given on successive

lines.

Hyperatom 1 2 4 5

Component(s} two pentagons  pentagram  one pentagon  pentagram

Site symmetry 5m Sm 10m2 10m2

Multiplicity 4 4 2 pA

sii=1,...,4 1 3 0 2

xs 0.0631(3) 0.1142) 3 i

Bl 0.3(2) (1) 36N 0.8(6)
5.3(8) 1.0(6} — 2.5(5)

Bl 0.6(2) 6(2) 72) 1.4(9)
2.5(5) 8(2) —_ 0.3(3)

Pt 1 i 1 1
0.80(8) 0.53(7) —_ 0.51(6)

PAl 0 0.5(2) 1 0
0.7%6) 0.9(2} —_ 0

Pin 0 0.5(2) 0 0.60(9)
0.09(5) 0.1(2) — 0.65(4)

Pee 1 4] 0 040
0.12 0 — Q.31

Radius, A, 0.147¢{6) -0.18 0.39(2) 0.15
0.45(1) —0.47(2) —_ 0.38(1)

for u-Aly 12 (Shoemaker et al 1989), and R = 0.066 for AlsMn (Hiraga er al 1993).
This is caused by deficiencies of the refined model but also by experimental problems: as
mentioned by Hiraga and co-workers (1991), a single annealed sample may contain regions
with perfect decagonal structure besides ones with nanocrystalline or random tiling-like
atomic arrangements. In such a case, the Bragg intensities of these structurally different
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Figure 5. (10110} section of the so Fourier function caleulated after the last refinement cycle
using Fo{E} for Fourier coefficients. The hyperatoms in the asymmetric unit are marked by 1,
2,3, 4 and 5. The lower part of hyperatom 2 and one other peak (both marked by arrows) are
artefacts generated by series truncation effects. All coordinates are given on the v basis.

parts would be superposed coherently and/or incoberently and bias the calculated structure
amplitudes. These problems are well known from the structure analysis of regular crystals
with microdomain structures. Another experimental problem not satisfactorily solved was
the separation of weak Bragg reflections from the structured diffuse background. It has to
be pointed out, however, that to date our data set represents the largest data set included
successfully in quasicrystal structure refinement. The refined hyperatomic parameters are
listed in table 1; the characteristic (20110} Fourier section with refined hyperatoms numbered
is plotted in figure 5; figure 6 illustrates (0001 1) sections of the density distobution of the
hyperatoms, with the hyperface fit parameters indicated. The core region of hyperatom
1 corresponds to Pd atoms, the surrounding region mainly to Al. Hyperatom 2 consists
of Al/Mn with Mn enriched in its central part, while hyperatom 4 consists of Al only.
Hyperatom 5 corresponds to ~ -;- Pd and ~ % Mn. Hyperatom 3 was not included in the
refinement in order to keep the number of variables low. The low cccupation probability of
the peripheral regions of the hyperatoms reflects the disordered character of the structure;
the atomic surfaces are no longer dense pianes in the perpendicular space comparable to
the case of fractal structures, for instance. The point density of 0.059 calculated from the
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Figure 6. Characteristic perpendicular-space (00011) sections of the s5p Fourier function
illustrating the density distribution of {a) hyperatom 1 with pentagon parameters Az used
for parametrization in the refinements. The upper drawing gives the density along x5 = 0.
Equivalent sections for the hyperatoms (&) 2, (¢} 3, (4) 4 and (¢) 5. All coordinates are given
oh the v basis.

least-squares parameters corresponds only to 2 lower Itmit as a consequence of the rather
crude model refined; the point density estimated from the MEM maps is significantly higher,
and that determined from the model is equal to 0.066. For comparison, for icosahedral
Algz7Mng ¢Pds; 7 a point density of 0.069 and for the approximant phase AlsMn a point of
density of 0.068 were derived.

Using solely the Bragg reflections and neglecting the diffuse scattering during the
structure analysis is equivalent to averaging over the disordered structure. In terms of
the nD description, this corresponds te a superposition of hyperatoms of different 5D unit
cells that would be identical in an ordered structure but differ from each other in the presence
of disorder. A completely satisfying parametrization of the resulting complex hyperatoms
would increase the number of variables to be refined in an inadmissible manner. The
modelling of the hyperatoms by 5D least-squares refinements was stopped, therefore, after
reaching an R factor that was small enough to warrant correct phases (0 or & in our case of
a centrosymmetric structure) of at least the larger structure factors. Subsequently, 3D MEM
was employed for phasing the remaining structure amplitudes {for a detailed description of
this method see the ACN paper): the calculated signs of the 151 largest structure factors
({Fo(HD)| 2 0.1)F(000)]) out of 476 were assigned to the observed structure amplitudes
| F,(H)| constituting an MEM starting set. Each MEM calculation was run until R < 0.05
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(the expected R factor), then all observed structure amplitudes of the unused set with
(1 — x)|F(H)| < [Fo(H)| € (14 x)|F(HDE x = 0.25 in all cycles but the last one
{(x = 0.5), were supplied with the signs of the respective calculated structure factors and
included into the new MEM starting set, and so on. It is ernphasized that MEM was applied
as a purely 30 technique not affected by any problems of finding a correct 5D basis (5D
supercell), since all observable Bragg reflections were self-consistently indexed on a 3D
basis. One shortcoming of 30 MEM, however, was the limited size of the 3D electron-
density function in the quasiperiodic plane: the MEM calculations were performed on a
1000 x 1000 x 80 grid for a volume of 195 x 195 x 12.557 A3 with symmetry taken into
account. To transform the 3D structure information into a 5D representation, ie. to image
the sD hyperatoms, the density obtained by MEM had simply to be lifted (cf the ACN paper).

4. Discussion

4.1. The diffraction pattern

The precession photographs (figure 1) show sharp Bragg reflections, satellites and diffuse
scattering condensed in equally sized, outlined pentagons arranged in decagonal rings around
strong Bragg reflections. The sharp spots on the zero-layer precession photograph give a
pattern very similar to that found for the Bragg intensities on an equivalent photograph
of decagonal Aly;pCo;sNis, indicating that the projected average structures (not the real
disordered ones!) should be closely related. Indeed, comparing the respective projected
electron-density maps (figure 7 of this work and figure 8 of the ACN paper), a similar
distribution of large and small wheel-like motifs can be found. These wheels correspond
to columnar clusters as known from the structure analysis of decagonal AlzCosNiys (cf
the ACN paper), and their structures can be reconstructed by evaluating the physical-space
sections of the sD electron-density function (figure 8). Some high-H- reflections coincide
with outer corners of the diffuse pentagons and might be slightly less sharp than the low-H*
ones. Shifts of Bragg spots away from their ideal positions indicating anisotropic phason
strain are not observed.

The diffuse scattering (figure 1) is completely different from that observed for decagonal
Al7pCoysNijs (cf figure 1 of the ACN paper). It shows great resemblance to optical diffraction
patterns taken from random Robinson-triangle tilings containing nanocrystatline regions (cf
figure 3(c) of Welberry 1989} and to electron-diffraction photographs of disordered regions
of AlpMn7Pd;s, annealed at 800°C for 4 days (figure 4 of Hiraga et af 1991), It has,
however, not even the slightest similarity to the diffuse scattering generated by, for instance,
random Penrose-rhombus tilings (Welberry 1991).

The intensity ratio of diffuse scattering compared to Bragg scattering, and thereby the
amount of disorder present in the structure, can be estimated by means of the cone-axis
photograph (figure 1(d)}: each ring corresponds to cne projected reciprocal lattice layer.
It is found that the intensity of the integrated diffuse scattering is of the same order as
that of the Bragg scattering, as is also found for decagonal AlyCoysNiys (cf figure 1{f)
of the ACN paper). It has to be mentioned that this type of structured diffuse scattering
is completely absent in comparable diffraction patterns of decagonal Al;sMng; (cf figure 2
of Steurer and Mayer 1989). Since in our structural study diffuse scattering is neglected,
only an average structure can be obtained, which reflects the global properties of decagonal
Alzp sMnyg sPdy3. The split positions in the electron density maps (figure 8), as far as they
are not cansed by series-termination effects, contain the information on all the different
orientations and combinations of the clusters that occur in the structure, The atomic
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Figure 7. 195 x 195 AZ parallel-space (11000) projection of the electron density. One Penrose
unit rhombus, with edge length af = L = 20.29(1) A and Robinson triangles marked, is
shaded. Additionally, a part of a random Robinson tiling inflated by a factor r is superposed to
the electron density map. The black dots on its vertices mark pesitions of possible decagonal
ring contrasts on corresponding HRTEM images (¢f Beeli ef af 1991, Hiraga er al 1991). All
coordinates are given on the v basis.

configuration of the clusters can be derived from the average structure only becavse of
the self-similarity properties of their structures and the strictly limited packing possibilities
leading to rather perfect coincidence site lattices, with only a few ambiguities in atomic
positions and some more in chemical ordering,

From basic similarities of the electron diffraction patterns of decagonal AlygsMnyssPd;3
to those of orthorhombic Al;Mn, Hiraga and co-workers (1993) concluded a close
resemblance of their local structures. This is confirmed, at least for the projected structures,
by the great similarity of the respective patterson maps (figure 9 of this work and figure 4
of Hiraga et al 1993), Other approximants for this type of decagonal phase are monoclinic
AljsFey as was previously demonstrated for isotypic decagonal Al;sMngz (Steurer 1991),
and hexagonal u-Aly ;zMn (Shoemaker 1993). In all the approximant structures pentagonal
and decagonal structure motifs can be found in a non-optimum way of packing, i.e. the
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eigensymmetry of the structure motifs does not agree with the lattice symmetry, By contrast,
quasiperiodicity allows a much more effective packing, without the need to distort these
structure elements. It should be emphasized that the term ‘approximant’ does not necessarily
mean that the approximant structure and the decagonal structure are related by a particular
5D rotation; this case would be called ‘rational approximant’. It is rather used here in the
meaning of ‘related structure’.

Figure 9. 15.6 » 15.6 A? parallel-space (11000) projection of the Patterson function, Several
maxima are marked with letters P~U for comparison with the respective Patterson map of
arthorhombic AlsMn.

Decagonal AlzsMnygsPd; is perfectly ordered along the periodic direction (there is
no diffuse scattering perpendicular to the layers) while for isotypic metastable decagonal
AlrsMna a doubling of the period is indicated by diffuse interlayer lines on the diffraction
patterns. Similar phenomena are observed for decagonal Al;gCo;sNis and AlgsCo sCusg
(Frey and Steurer 1993).

4.2. The columnar clusters

From the electron-density maps (figure 8) the cross-sections of the elementary columnar
clusters and their linking principles can be derived. The structure motifs found in these
sections are dominated by interconnected pentagons, trapezoids and decagons, which form
a decoration of an underlying Penrose quasilattice (basic quasilattice) with edge tength of the
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Figure 10. Schematic representation of the layer-stacking principles of a columnar cluster of
decagonal AlysMnyssPdi; along one translation period, Characteristic coordination polyhedra
are outlined and typical interlayer distances are given.

unit rhombus g, = 2.518(1) . The electron-density maps also allow a partial reconstruction
of the AUMn/Pd distribution. The split maxima among others reflect the different ways of
atomic relaxation during the coalescence of several columnar clusters.

The in-plane atomic distances, with 2.518(1) A (radius of a small pentagon) and
2.961(1) A (edge length of a small pentagon) are significantly larger than the shortest inter-
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planar atomic bond lengths of 2.32 A, for instance, for the small pentagonal antiprisms
(figure 10). Typical bond lengths in intermetallic compounds of similar composition are,
for comparison: dal-a1 = 2.60-2.91 A and 2.527-3.166 A, daj-yn = 2.39-2.80 A and
2.350-2.874 A, dyin—ma = 2.66-2.78 and 2.678-2.758 A for orthorhombic AlsMn (Hiraga
et al 1993) and hexagonal p-Aly 12Mn (Shoemaker et al 1989), respectively. The respective
Pd distances are slightly larger, such as da-pg = 2.525-2.744(1) A for tetragonal Al Pdg
(Range and Christl 1988), and dpg-pa = 2.750 A for elementary Pd. Thus, the small
pentagonal antiprisms may preferentially consist of alternating stacked Al and Mn pentagons
strongly bonded together. These pentagonal antiprismatic columns running parailel to the
columnar cluster axis (one at the centre and ten more around it) appear to be the most
stable structure motifs stabilizing the columnar clusters as independent structural vaits. The
structure of such a columpar cluster s shown schematically in figure 10.

Orthorhombic AlsMn locally shows a similar stacking sequence azlong b, the axis being
related to the tenfold screw axis of the decagonal phase: antiprismatic pentagonal prisms
(a) alternate with pentagonal prisms (p) with the same sequence ... aapaa... (Hiraga ef al
1993) as in the peripheral parts of the columnar clusters of the decagonal phase. Hexagonal
i-Aly 12Mn also shows a strong resemblance to the decagonal phase (Shoemaker 1993): the
a axis corresponds to a pseudofivefold rotation axis, and many structure motifs occur like
the pentagon—trapezoid bands, which are also characteristic of the decagonal phase,

4.3. The packing of the clusters

Starting with one columnar cluster, the coalescence of a second cluster can be carried out
with quite perfect coincidence regions in only five symmetrically equivalent orientations
and with two different interpenetration depths resulting in centre-to-centre distances I, =
20.29(1) Aand S = L/t {r = (1+5"2)/2). For sterical reasons the number of combinations
decreases drastically when more clusters are added. In figure 11 the aggregation of, in
each case, three clusters into large and smali Robinson triangles is shown schematically
for different x; levels. The coincidence regions contain a few ambiguities in atomic
positions (exemplarily marked by arrows in figure 11(a)}, which may be separately realized
at different sites in the real structure. The ring of ten chains of pentagonal prisms and
antiprisms around the centre of a cluster, appearing in the projected structure as smail
decagons (marked in figure 8(d) by dotted lines) is preserved when two columnar clusters
are linked with distance L. For the aggregation of a cluster with distance § = L/t these
decagonal rings can be presereved only for one cluster; the others become distorted. One
such distorted decagon near the centre of a large Penrose rhombus is marked in figure 8(d)
by dotted lines. Thus the Robinson triangles become asymmetrically decorated. This
explains the observation that in HRTEM images only distances L occur between the decagonal
ring contrasts. Parts of the projected electron density mapped in figure 7 were partly
superimpaosed with a random Robinson-triangle tiling, and vertices with distances from
each other larger than or equal to L were marked by black dots. Connecting the dots a
random Robinson tiling inflated by a factor of t is obtained. If these inflated Robinson
triangles, representing a kind of superstructure of the basic quasilattice of small Penrose
rhombi (cf figure 8(d)), are really present in the structure, this has to be reflected in the
diffraction pattern: indeed, satellite reflections are observed that can be indexed by wave
vectors of length af™ = 0.124/7af = 0.0766a}, i = 1,...,4 (figure 1{a)). A comparison
with figures 2 and 4 of the paper by Hiraga and co-workers (1991) confirms that this
model is also in agreement with HRTEM images of both the decagonal and nanocrystalline
parts of the sample. Without matching rules, these unit tiles combine randomly. Indeed,
as indicated by the diffuse scattering, our sample has a high degree of disorder. On the
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other hand, the precession photographs indicate that the systematic extinction rules for the
Bragg reflections are also valid for the diffuse scattering. This appears to be the crucial
point for the interpretation of the diffuse scattering. Since at high temperature no structured
diffuse scattering is observed, the structural distortions initiated at lower temperatures must
leave invariant the symmetry of the average and the real structure in coherently scattering
regions of at least several hundred A diameter. In the nD description the disorder may then
be described by a random fluctuation in phason space, bounded by a periodic wave. The
global phason strain is zero because no shifts of reflections could be observed.

The structure model for the columnar clusters of decagonal Al,yMn,Pd 3 proposed by
Hiraga and Sun (1993}, considering AlsMn as a close approximant of the decagonal phase,
has only locally some similarities to the present model. Comparing decagonal Al-Mn-Pd,
however, with the structure of icosahedral Algg7MnggPdy 7 (Boudard et al 1992) shows
an almost identical electron-density distribution of the projected structures. This is not
very astonishing, since the decagonal phase obeys pseudo-icosahedral diffraction symmetry,
indicating that the decagonal phase is a closely related approximant of the icosahedral phase.
It was also observed that crystals of the decagonal phase epitaxially grown on grains of
the icosahedral phase have their tenfold axes parallel to one of the fivefold axes of the
icosahedral phase (Beeli 1992). The atomic layers of the decagonal phase have, at least
with regard to the atomic positions, their analogues in the icosahedral phase (cf figure 10
of the paper by Boudard et af 1992): the layer in x3 = 0.065 = 745 = 2.522 A, the layer
in x3 = 0.113 & 7,5 = 0.482 A, the layer in x3 = L & the layer in 745 = 0.482 A,
rotated around 27/10. The decoration with atomic species appears to be different, a natural
consequence of the different chemical compositions of the decagonal and the icosahedral
phase (Pd is partly substituted for Al compared to the decagonal phase).

5. Concluding remarks

The structure of decagonal Al sMnssPdis can be described as a kind of random tiling
of Robinson triangles, with edge lengths L = 20.29(1) A and S = L/r. The unit tiles
are decorated with columnar clusters, with intracolumnar bonds shorter than intercolumnar
ones. The structure of the columnar clusters, on the other hand, corresponds to a decorated
Penrose tiling, with edge length of the unit rhombus a; = 2.518(1) A. Thus, the structure
of the decagonal phase resembles a random tiling of smail pieces of an ordered decorated
Penrose tiling. The local structure of the decagonal phase shows close resemblance to
the local structures of icosahedral Algg7Mng ¢Pdy) 7 and of the approximant phases Al;Mn,
}.L-A14.12M11 and A][3Fe4.
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